proton

[paper] Demonstration of the double Penning Trap technique with a single proton

Demonstration of the double Penning Trap technique with a single proton

A. Mooser et al.

doi: 10.1016/j.physletb.2013.05.012

Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field.
For the spin-state analysis the proton was transported into a second Penning trap with
a superimposed magnetic bottle, and the continuous Stern–Gerlach effect was applied.
This first demonstration of the double Penning trap technique with a single proton suggests
that the antiproton magnetic moment measurement can potentially be improved by three
orders of magnitude or more.

[paper] Direct Measurement of the Proton Magnetic Moment

Direct Measurement of the Proton Magnetic Moment

J. DiSciacca and G. Gabrielse

doi: 10.1103/PhysRevLett.108.153001

The proton magnetic moment in nuclear magnetons is measured to be μpN≡g/2=2.792 846±0.000 007, a 2.5 parts per million uncertainty. The direct determination, using a single proton in a Penning trap, demonstrates the first method that should work as well with an antiproton (p̅ ) as with a proton (p). This opens the way to measuring the p̅ magnetic moment (whose uncertainty has essentially not been reduced for 20 years) at least 103 times more precisely.