B(E2)

[Paper] Spectroscopic Quadrupole Moments in 96,98Sr: Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N=60

Spectroscopic Quadrupole Moments in Sr96,98: Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N=60

E. Clément et al.

doi: 10.1103/PhysRevLett.116.022701

Neutron-rich 96,98Sr isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N=60.

[Paper] Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

J.M. Allmond et al.

DOI: 10.1103/PhysRevC.92.041303

A complete set of electromagnetic moments, B(E2;0+1→2+1),Q(2+1), and g(2+1), have been measured from Coulomb excitation of semi magic 112,114,116,118,120,122,124Sn (Z=50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ∼4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler-shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2+1), has been measured for 114Sn. The static quadrupole moments are generally consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The g-factor measurements in 112,114Sn establish the recoil-in-vacuum method for states with τ∼0.5 ps and hence demonstrate that this method can be used for future g-factor measurements on proton-rich isotopes toward 100Sn. Current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at midshell and outside of current model spaces, needs to be investigated in the future.

[paper] Nuclear structure of the even-even argon isotopes with a focus on magnetic moments

Nuclear structure of the even-even argon isotopes with a focus on magnetic moments

S.J.Q. Robinson et al.

10.1103/PhysRevC.79.054322″

We study the role of configuration mixing in the heavier even-even isotopes of argon. We begin by limiting the configurations of the even-even Ar isotopes to (d3/22)&pi (f7/2n)ν. There, due to the particular location in this shell-model space of 40Ar and 44Ar, we find that the spectra, B(E2)’s, and magnetic moments of these two nuclei are identical. Any deviation from this equality is direct evidence of configuration mixing. In a larger shell-model space there are significant differences between these two nuclei, with 44Ar being more collective. We also consider other even-even isotopes of argon and study how their nuclear structure effects evolve with N. We compare in the full 0ℏ ω space (sd)π (fp)ν the results of calculations with the WBT interaction and with the newer SDPF, denoted SDPF-U, interaction.

[paper] Quadrupole moments of some nuclei around the mass of A∼80: 76,78,80,82,84Kr and neighboring Se isotope

Quadrupole moments of some nuclei around the mass of A∼80: 76,78,80,82,84Kr and neighboring Se isotope

N. Turkan et al.

doi: 10.1134/S1063778809060088

The quadrupole moments of 76,78,80,82,84,88Kr and 74,76,78,80,82Se isotopes are investigated in terms of the interacting boson model (IBM), and it was found that a good description of them can also be concluded in this model. Before the quadrupole moments were calculated, the positive-parity states and electromagnetic-transition rates (B(E2)) of even-mass Kr nuclei have also been obtained within the framework of IBM. It was seen that there is a good agreement between the presented results and the previous experimental data. The quadrupole moments of the neighboring Se isotopes were also obtained and it was seen that the results are satisfactorily agree well with the previous experimental data.