69Cu

[paper] Magnetic moment of the 13/2+ isomeric state in 69Cu: Spin alignment in the one-nucleon removal reaction

Magnetic moment of the 13/2+ isomeric state in 69Cu: Spin alignment in the one-nucleon removal reaction

A. Kusoglu et al.

doi: http://dx.doi.org/10.1103/PhysRevC.93.054313

We report on a new measurement of the g factor of the (13/2+) isomeric state in the neutron-rich nucleus 69Cu. This study demonstrates the possibility of obtaining considerable nuclear spin alignment for multi-quasiparticle states in single-nucleon removal reactions. The time-dependent perturbed angular distribution (TDPAD) method was used to extract the gyromagnetic factor of the (13/2+) [T½=351(14) ns] isomeric state of 69Cu. Its g factor was obtained as g(13/2+)=0.248(9). The experimentally observed spin alignment for the state of interest was deduced as A=−3.3(9)%.

[paper] Hyperfine field and hyperfine anomalies of copper impurities in iron

Hyperfine field and hyperfine anomalies of copper impurities in iron

V. V. Golovko et al.

doi: 10.1103/PhysRevC.84.014323

A new value for the hyperfine magnetic field of copper impurities in iron is obtained by combining resonance frequencies from experiments involving β-NMR on oriented nuclei on 59Cu, 69Cu, and 71Cu with magnetic moment values from collinear laser spectroscopy measurements on these isotopes. The resulting value, i.e., Bhf(CuFe) = -21.794(10) T, is in agreement with the value adopted until now but is an order of magnitude more precise. It is consistent with predictions from ab initio calculations. Comparing the hyperfine field values obtained for the individual isotopes, the hyperfine anomalies in Fe were determined to be 59Δ69=0.15(9)% and 71Δ69=0.07(11)%.

[paper] Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes from N=28 to N=46: Probes for core polarization effects

Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes from N=28 to N=46: Probes for core polarization effects

P. Vingerhoets et al.

doi: 10.1103/PhysRevC.82.064311

Measurements of the ground-state nuclear spins and magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the CERN online isotope mass separator (ISOLDE) facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is, however, strongly reduced at N=40 due to the parity change between the pf and g orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.