News from the database battle

Dear All,

We are a couple of steps away from completing the database we’ve been putting together online. This is one of the reasons the blog has been left without recent updates. However, we are coming back in track and promise you more content in 2012.

Stay tuned!

Maintenance and update issues

Hi all,

I have been busy the last couple of months and had no real time to add more data to the site. The blog will continue being updated, so keep visiting back. We are also just a few steps away from Z=50 in magneticomoments.info

Unfortunately, I have no good way to speed up the process as I am trying to be careful with the data published and have no help by other people. Once this compilation is uploaded, I will start adding data as they appear on journal publications (NO evaluation). Till then, you may visit the blog.

Thanks,

tjm++

[paper] First g-factor measurements of the 21+ and the 41+ states of radioactive 100Pd

First g-factor measurements of the 21+ and the 41+ states of radioactive 100Pd

D.A. Torres et al.

doi: 10.1103/PhysRevC.84.044327

The g factors of the first 2+ and 4+ states of the radioactive 100Pd nucleus have been investigated for the first time, using an α-particle transfer reaction from 12C to 96Ru. The transient magnetic field technique in inverse kinematics was used. The 10046Pd54 nucleus is a suitable candidate for studying single-particle proton and neutron effects in the nuclear wave functions near the N=Z=50 shell closures. The results are discussed within the frameworks of both large-scale shell-model calculations and collective-model predictions.

[paper] In-source laser spectroscopy of 75,77,78Cu: Direct evidence for a change in the quasiparticle energy sequence in 75,77Cu and an absence of longer-lived isomers in 78Cu

In-source laser spectroscopy of 75,77,78Cu: Direct evidence for a change in the quasiparticle energy sequence in 75,77Cu and an absence of longer-lived isomers in 78Cu

U. Köster et al.

doi: 10.1103/PhysRevC.84.034320

This paper describes measurements on the isotopes 75,77,78Cu by the technique of in-source laser spectroscopy, at the ISOLDE facility, CERN. The role of this technique is briefly discussed in the context of this and other, higher resolution, methods applied to copper isotopes in the range 57−78Cu. The data, analyzed in comparison with previous results on the lighter isotopes 59,63Cu, establish the ground-state nuclear spin of 75,77Cu as 5/2 and yield their magnetic dipole moments as +1.01(5)μN and +1.61(5)μN, respectively. The results on 78Cu show no evidence for long-lived isomerism at this mass number and are consistent with a spin in the range 3–6 and moment of 0.0(4) μN.

[paper] Gyromagnetic factors in 144-150Nd

Gyromagnetic factors in 144-150Nd

A. Giannatiempo

doi: 10.1103/PhysRevC.84.034319

The U(5) to SU(3) evolution of the nuclear structure in the even 144-156Nd isotopes has been investigated in the framework of the interacting boson approximation (IBA-2) model, taking into account the effect of the partial Z=64 subshell closure on the structure of the states of a collective nature. The analysis, which led to a satisfactory description of excitation energy patterns, quadrupole moments, and decay properties of the states (even when important M1 components were present in the transitions), is extended to the available data on g factors, in 144-150Nd. Their values are reasonably reproduced by the calculations.

[paper] Hyperfine field and hyperfine anomalies of copper impurities in iron

Hyperfine field and hyperfine anomalies of copper impurities in iron

V. V. Golovko et al.

doi: 10.1103/PhysRevC.84.014323

A new value for the hyperfine magnetic field of copper impurities in iron is obtained by combining resonance frequencies from experiments involving β-NMR on oriented nuclei on 59Cu, 69Cu, and 71Cu with magnetic moment values from collinear laser spectroscopy measurements on these isotopes. The resulting value, i.e., Bhf(CuFe) = -21.794(10) T, is in agreement with the value adopted until now but is an order of magnitude more precise. It is consistent with predictions from ab initio calculations. Comparing the hyperfine field values obtained for the individual isotopes, the hyperfine anomalies in Fe were determined to be 59Δ69=0.15(9)% and 71Δ69=0.07(11)%.

[paper] Magnetic moments of the first excited 2+ states in the semi-magic 112,114,116,122,124Sn isotopes

Magnetic moments of the first excited 2+ states in the semi-magic 112,114,116,122,124Sn isotopes

J. Walker et al.

doi: 10.1103/PhysRevC.84.014319

The g factors of the first excited 2+ states in the 112,114,116,122,124Sn isotopes have been measured with high accuracy using the transient field technique in combination with Coulomb excitation in inverse kinematics. The experimental results are discussed in a qualitative way on the basis of empirical single-particle g factors of the relevant proton and neutron orbitals and are compared to a number of different theoretical calculations. The results are found to be best described by shell-model calculations in an extended configuration space. Clear evidence for the contribution of neutron pair excitations from the 1d3/2 to the 0h11/2 orbital to the wave function of the 21+ state in 122,124Sn has been obtained.

[paper] Quadrupole moments of collective structures up to spin ∼65ℏ in 157Er and 158Er: A challenge for understanding triaxiality in nuclei

Quadrupole moments of collective structures up to spin ∼65ℏ in 157Er and 158Er: A challenge for understanding triaxiality in nuclei

X. Wang et al.

doi: 10.1016/j.physletb.2011.07.007

The transition quadrupole moments, Qt, of four weakly populated collective bands up to spin ∼65ℏ in 157,158Er have been measured to be ∼11 eb demonstrating that these sequences are associated with large deformations. However, the data are inconsistent with calculated values from cranked Nilsson–Strutinsky calculations that predict the lowest energy triaxial shape to be associated with rotation about the short principal axis. The data appear to favor either a stable triaxial shape rotating about the intermediate axis or, alternatively, a triaxial shape with larger deformation rotating about the short axis. These new results challenge the present understanding of triaxiality in nuclei.

[paper] g Factor of Hydrogenlike 28Si13+

g Factor of Hydrogenlike 28Si13+

S. Sturm et al.

doi: 10.1103/PhysRevLett.107.023002

We determined the experimental value of the g factor of the electron bound in hydrogenlike 28Si13+ by using a single ion confined in a cylindrical Penning trap. From the ratio of the ion’s cyclotron frequency and the induced spin flip frequency, we obtain g=1.995 348 958 7(5)(3)(8). It is in excellent agreement with the state-of-the-art theoretical value of 1.995 348 958 0(17), which includes QED contributions up to the two-loop level of the order of (Zα)2 and (Zα)4 and represents a stringent test of bound-state quantum electrodynamics calculations.

[paper] Wigner Crystals of 229Th for Optical Excitation of the Nuclear Isomer

Wigner Crystals of 229Th for Optical Excitation of the Nuclear Isomer

C.J. Campbell et al.

doi: 10.1103/PhysRevLett.106.223001

We have produced laser-cooled Wigner crystals of 229Th3+ in a linear Paul trap. The magnetic dipole (A) and electric quadrupole (B) hyperfine constants for four low-lying electronic levels and the relative isotope shifts with respect to 232Th3+ for three low-lying optical transitions are measured. Using the hyperfine B constants in conjunction with prior atomic structure calculations, a new value of the spectroscopic nuclear electric quadrupole moment Q=3.11(16)  eb is deduced. These results are a step towards optical excitation of the low-lying isomer level in the 229Th nucleus.