PRC

[paper] Quantum Monte Carlo calculations of magnetic moments and M1 transitions in A≤7 nuclei including meson-exchange currents

Quantum Monte Carlo calculations of magnetic moments and M1 transitions in A≤7 nuclei including meson-exchange currents

L.E. Marcucci et al.

doi: 10.1103/PhysRevC.78.065501

Green’s function Monte Carlo calculations of magnetic moments and M1 transitions including two-body meson-exchange current (MEC) contributions are reported for A≤7 nuclei. The realistic Argonne v18 two-nucleon and Illinois-2 three-nucleon potentials are used to generate the nuclear wave functions. The two-body meson-exchange operators are constructed to satisfy the continuity equation with the Argonne v18 potential. The MEC contributions increase the A=3,7 isovector magnetic moments by 16% and the A=6,7 M1 transition rates by 17–34%, bringing them into very good agreement with the experimental data.

[paper] Correct use of the Gordon decomposition in the calculation of nucleon magnetic dipole moments

Correct use of the Gordon decomposition in the calculation of nucleon magnetic dipole moments

M. Mekhfi

doi: 10.1103/PhysRevC.78.055205

We perform the calculation of the nucleon dipole magnetic moment in full detail using the Gordon decomposition of the free quark current. This calculation has become necessary because of frequent misuse of the Gordon decomposition by some authors in computing the nucleon dipole magnetic moment.