g factor

An update of the nuclear moments update: masses and charge radii

For those of you who are following my blog or twitter feed, what I am about to say is not quite new. I have already made a comment a couple of weeks ago regarding the last update of the database I administer. The database contains non-evaluated, experimentally deduced values of nuclear magnetic dipole and electric quadrupole moments. The official release of the database is hosted on IAEA servers and they are responsible for the dissemination of the information included to the world’s nuclear community. However, I keep a test server available for updates and testing new ideas before they appear on the IAEA’s website. This URL is http://magneticmoments.info/data

As I said earlier, a couple of weeks ago I have managed to find the time and upgrade the database with two important observables that people have requested in the recent past. The first one is masses, while the second one is nuclear charge radii. The former is listed in each isotope selected in the database in the form of mass excess Δm (=mass-A). Please notice I do not provide the whole table maintained by the Chinese colleagues (latest AME2012). Rather, I use it as an associate value to the spectroscopic values included when an isotope is selected.

The nuclear charge radii on the other hand is a new addition to the database and I intend to keep updating regardless the official releases (in print format) by IAEA or any other source. The radii are important structure information and as such they will be treated with extra care during each upgrade.

Besides these two extensive updates, lifetimes, spins and parities are slowly being synced with the evaluated data existing in the ENSDF.

You spot a problem or have something to say about the database, please let me know.

[paper] Isomer Shift and Magnetic Moment of the Long-Lived ½+ Isomer in 79Zn: Signature of Shape Coexistence near 78Ni

Isomer Shift and Magnetic Moment of the Long-Lived ½+ Isomer in 79Zn: Signature of Shape Coexistence near 78Ni

X.F. Yang et al.

doi: 10.1103/PhysRevLett.116.182502

Collinear laser spectroscopy is performed on the 79Zn isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in 79Zn, as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=½ are firmly assigned to the ground and isomeric states. The magnetic moment μ(79Zn)=-1.1866(10)μN, confirms the spin-parity I=9/2+ with a νg9/2-1  shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ(79mZn)=-1.0180(12)μ supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ2>79,79m=+0.204(6) fm2, providing first evidence of shape coexistence.

[Paper] Hyperfine magnetic fields in substituted Finemet alloys

Hyperfine magnetic fields in substituted Finemet alloys

K. Brzózka et al.

doi: 10.1007/s10751-016-1245-1

Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

[preprint] Populating Low-Spin States in Radioactive Nuclei to Measure Magnetic Moments Using the Transient Field Technique

Populating Low-Spin States in Radioactive Nuclei to Measure Magnetic Moments Using the Transient Field Technique

D.A. Torres and F. Ramírez

arXiv: 1601.03602

The experimental study of magnetic moments for nuclear states near the ground state, I≥2, provides a powerful tool to test nuclear structure models. The study of magnetic moments in nuclei far away from the stability line is the next frontier in such studies. Two techniques have been utilized to populated low-spin states in radioactive nuclei: coulomb excitation reactions using radioactive nuclei, and the transfer of α particles to stable beams to populate low spin states in radioactive nuclei. A presentations of these two techniques, along with the experimental challenges presented for future uses with nuclei far away from the stability line, will be presented.

[Paper] Magnetic moments in odd-A Cd isotopes and coupling of particles with zero-point vibrations

Magnetic moments in odd-A Cd isotopes and coupling of particles with zero-point vibrations

S. Mishev and V. V. Voronov

DOI: 10.1103/PhysRevC.92.044329

Background: The coupling of the last nucleon with configurations in the ground state of the even-even core is known to augment the single quasiparticle fragmentation pattern. In a recent experimental study by Yordanov et al. the values of the magnetic dipole and electric quadrupole moments of the 11/2 state in a long chain of Cd isotopes were found to follow a simple trend which we try to explain by means of incorporating long-range correlations in the ground state.

Purpose: Our purpose is to study the influence of ground-state correlations (GSCs) on the magnetic moments and compare our results with the data for the odd-A Cd isotopes.

Method: In order to evaluate if the additional correlations have bearing on the magnetic moments we employ an extension to the quasiparticle-phonon model (QPM) which takes into account quasiparticle⊗phonon configurations in the ground state of the even-even core affecting the structure of the odd-A nucleus wave function.

Results: It is shown that the values for the magnetic moments which the applied QPM extension yields deviate further from the Schmidt values. The latter is in agreement with the measured values for the Cd isotopes.

Conclusions: The GSCs exert significant influence on the magnetic dipole moments and reveal a potential for reproducing the experimental values for the studied cadmium isotopes.

[Paper] Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

J.M. Allmond et al.

DOI: 10.1103/PhysRevC.92.041303

A complete set of electromagnetic moments, B(E2;0+1→2+1),Q(2+1), and g(2+1), have been measured from Coulomb excitation of semi magic 112,114,116,118,120,122,124Sn (Z=50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ∼4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler-shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2+1), has been measured for 114Sn. The static quadrupole moments are generally consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The g-factor measurements in 112,114Sn establish the recoil-in-vacuum method for states with τ∼0.5 ps and hence demonstrate that this method can be used for future g-factor measurements on proton-rich isotopes toward 100Sn. Current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at midshell and outside of current model spaces, needs to be investigated in the future.

[paper] Gyromagnetic gs factors of the spin-1/2 particles in the (½+-3/2) triad of the four-vector spinor, ψμ, irreducibility and linearity

Gyromagnetic gs factors of the spin-1/2 particles in the (½+-3/2) triad of the four-vector spinor, ψμ, irreducibility and linearity

E.G. Delgado Acosta et al.

DOI: 10.1142/S0218301315500603

The gauged Klein–Gordon equation, extended by a gsσμνFμν/4 interaction, the contraction of the electromagnetic field strength tensor, Fμν, with the generators, σμν/2, of the Lorentz group in (1/2, 0) ⊕ (0, 1/2), and gs being the gyromagnetic factor, is examined with the aim to find out as to what extent it qualifies as a wave equation for general relativistic spin-1/2 particles transforming as (1/2, 0) ⊕ (0, 1/2) and possibly distinct from the Dirac fermions. This equation can be viewed as the generalization of the gs = 2 case, known under the name of the Feynman–Gell-Mann equation, the only one which allows for a bilinearization into the gauged Dirac equation and its conjugate. At the same time, it is well-known a fact that a gs = 2 value can also be obtained upon the bilinearization of the nonrelativistic Schrödinger into nonrelativistic Pauli equations. The inevitable conclusion is that it must not be necessarily relativity which fixes the gyromagnetic factor of the electron to g(1/2) = 2, but rather the specific form of the primordial quadratic wave equation obeyed by it, that is amenable to a linearization. The fact is that space-time symmetries alone define solely the kinematic properties of the particles and neither fix the values of their interacting constants, nor do they necessarily prescribe linear Lagrangians. Information on such properties has to be obtained from additional physical inputs involving the dynamics. We here provide an example in support of the latter statement. Our case is that the spin-1/2- fermion residing within the four-vector spinor triad, ψμ ~ (½+-3/2), whose sectors at the free particle level are interconnected by spin-up and spin-down ladder operators, does not allow for a description within a linear framework at the interacting level. Upon gauging, despite transforming according to the irreducible (1/2, 1) ⊕ (1, 1/2) building block of ψμ, and being described by 16-dimensional four-vector spinors, though of only four independent components each, its Compton scattering cross sections, both differential and total, result equivalent to those for a spin-1/2 particle described by the generalized Feynman–Gell-Mann equation from above (for which we provide an independent algebraic motivation) and with g(½) = -2/3. In effect, the spin-½ particle residing within the four-vector spinor effectively behaves as a true relativistic “quadratic” fermion. The g(½) = -2/3 value ensures in addition the desired unitarity in the ultraviolet. In contrast, the spin-½+ particle, in transforming irreducibly in the (1/2, 0) ⊕ (0, 1/2) sector of ψμ, is shown to behave as a truly linear Dirac fermion. Within the framework employed, the three spin sectors of ψμ are described on equal footing by representation- and spin-specific wave equations and associated Lagrangians which are of second-order in the momenta.

[paper] Gamow-Teller transitions and magnetic moments using various interactions

Gamow-Teller transitions and magnetic moments using various interactions

Ricardo Garcia and Larry Zamick

doi: 10.1103/PhysRevC.92.034322

In a single j-shell calculation we consider the effects of several different interactions on Gamow-Teller B(GT) values and magnetic moments. The interactions used are MBZE, J=0 pairing, Jmax pairing, and half and half. Care is taken when there are isospin crossings and/or degeneracies.

[paper] Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers

Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers

A. Voss et al.

doi: http://dx.doi.org/10.1103/PhysRevC.91.044307

Collinear laser fluorescence spectroscopy has been performed on the ground and isomeric states of 204,206Fr in order to determine their spins, nuclear moments, and changes in mean-squared charge radii. A new experimental technique has been developed as part of this work which much enhances the data collection rate while maintaining the high resolution. This has permitted the extension of this study to the two isomeric states in each nucleus. The investigation of nuclear g factors and mean-squared charge radii indicates that the neutron-deficient Fr isotopes lie in a transitional region from spherical towards more collective structures.

Happy New Year!

I would like to wish you all a Happy New Year 2013.

Our database will soon be updated with recent data. Till then you may follow our RSS feed or on twitter (@tmertzi)